

Water Testing Performed in 2016

Presented by

City of Mount Dora

PWSID#: 3350858

We've Come a Long Way

Once again the City of Mount Dora is proud to present our annual water quality report covering the period between January 1 and December 31, 2016. In a matter of only a few decades, drinking water has become exponentially safer and more reliable than at any other point in human history. Our exceptional staff continues to work hard every day—at any hour to deliver the highest quality drinking water without interruption. Although the challenges ahead are many, we feel that by investing relentlessly in customer outreach and education, new treatment technologies, system upgrades, and training, the payoff will be reliable, high-quality tap water delivered to you and your family.

Please remember that we are always available to assist you should you ever have any questions or concerns about your water.

Source Water Assessment

In 2016 the Department of Environmental Protection performed a Source Water Assessment on the City's system. The assessment was conducted to provide information about any potential sources of contamination in the vicinity of our wells. There are six potential sources of contamination identified for this system with low to moderate susceptibility levels. The assessment results are available on the FDEP Source Water Assessment and Protection Program website at www.dep.state.fl.us/swapp.

Important Health Information

Some persons might be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants might be particularly at risk from infections. These persons should seek advice about drinking water from their health care providers. The U.S. EPA/CDC (Centers for Disease Control

and Prevention) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791 or http://water. epa.gov/drink/hotline.

Substances That Could Be in Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

Inorganic Contaminants, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

Pesticides and Herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.

Radioactive Contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the U.S. EPA prescribes regulations, which limit the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at (800) 426-4791.

From Where Does My Water Come?

The City of Mount Dora's water source is produced by five (5) ground water wells that draw water from the Floridian Aquifer. We have two water treatment plants, an East and a West plant to produce the supply needed for the city.

Protecting Your Water

Bacteria are a natural and important part of our world. There are around 40 trillion bacteria living in each of us; without them, we would not be able to live healthy lives. Coliform bacteria are common in the environment and are generally not harmful themselves. The presence of this bacterial form in drinking water is a concern, however, because it indicates that the water may be contaminated

with other organisms that can cause disease.

In 2016, the U.S. EPA passed a new regulation called the Revised Total Coliform Rule, which requires additional steps that water systems must take in order ensure the integrity of the drinking water distribution system by monitoring for the presence of bacteria like total coliform and *E. coli*. The rule requires more stringent standards than the previous regulation, and it requires water systems that may be vulnerable to contamination to have in place procedures that will minimize the incidence of contamination. Water systems that exceed a specified frequency of total coliform occurrences are required to conduct an assessment of their system and correct any problems quickly. The U.S. EPA anticipates greater public health protection under the new regulation due to its more preventive approach to identifying and fixing problems that may affect public health.

Although we have been fortunate to have the highestquality drinking water, our goal is to eliminate all potential pathways of contamination into our distribution system, and this new rule helps us to accomplish that goal.

IMPORTANT INFORMATION ABOUT YOUR DRINKING WATER

Monitoring Requirements Not Met for City of Mount Dora

We took 40 bacteriological samples in October. Of the 40 bacteriological samples in October. Of the 40 bacteriological samples in October. Of the 40 bacteriological samples in October 2016, none tested positive for colliform bacteria.

Public Meetings

The City of Mount Dora Council meetings offer opportunities for public participation including decisions about drinking water issues. Regular council meetings are held on the first and third Tuesday of each month, beginning at 6:00 p.m. in the City Hall Board Room, located on the first floor of City Hall (510 N. Baker St.).

Water Treatment Process

Mount Dora's treatment process consists of a series of steps. First, raw water is drawn from our wells, and polyphosphate is added for corrosion control. Then the water is pumped into aerators to remove hydrogen sulfide, a naturally occurring compound normally found in Florida waters. The water is treated with chlorine for disinfection and then stored in ground storage tanks before it goes to our distribution system for use by you, the customer.

Lead in Home Plumbing

f present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high-quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/lead.

QUESTIONS?

For more information about this report, or for any questions relating to your drinking water, please call the City of Mount Dora Public Works department at (352) 735-7151, ext. 1805, between the hours of 7:30 a.m. and 4:30 p.m., Monday through Friday.

What's a Cross-connection?

Cross-connections that contaminate drinking water distribution lines are a major concern. A cross-connection is formed at any point where a drinking water line connects to equipment (boilers), systems containing chemicals (air conditioning systems, fire sprinkler systems, irrigation systems) or water sources of questionable quality. Cross-connection contamination can occur when the pressure in the equipment or system is greater than the pressure inside the drinking water line (backpressure). Contamination can also occur when the pressure in the drinking water line drops due to fairly routine occurrences (main breaks, heavy water demand) causing contaminants to be sucked out from the equipment and into the drinking water line (backsiphonage).

Outside water taps and garden hoses tend to be the most common sources of cross-connection contamination at home. The garden hose creates a hazard when submerged in a swimming pool or when attached to a chemical sprayer for weed killing. Garden hoses that are left lying on the ground may be contaminated by fertilizers, cesspools or garden chemicals. Improperly installed valves in your toilet could also be a source of cross-connection contamination.

Community water supplies are continuously jeopardized by cross-connections unless appropriate valves, known as backflow prevention devices, are installed and maintained. We have surveyed industrial, commercial, and institutional facilities in the service area to make sure that potential cross-connections are identified and eliminated or protected by a backflow

preventer. We also inspect and test backflow preventers to make sure that they provide maximum protection.

The City of Mount Dora is in the process of adopting a Cross-Connection Control Program and City Ordinance in 2017. As a public water service customer, you may expect to receive more information about the Cross-Connection Control program as developments occur.

For more information on backflow prevention contact the Safe Drinking Water Hotline at (800) 426-4791.

Тір Тор Тар

The most common signs that your faucet or sink is affecting the quality of your drinking water are discolored water, sink or faucet stains, a buildup of particles, unusual odors or tastes, and a reduced flow of water. The solutions to these problems may be in your hands.

Kitchen Sink and Drain

Hand washing, soap scum buildup, and the handling of raw meats and vegetables can contaminate your sink. Clogged drains can lead to unclean sinks and backed up water in which bacteria (i.e., pink and black colored slime growth) can grow and contaminate the sink area and faucet, causing a rotten egg odor. Disinfect and clean the sink and drain area regularly. Also, flush regularly with hot water.

Faucets, Screens, and Aerators

Chemicals and bacteria can splash and accumulate on the faucet screen and aerator, which are located on the tip of faucets, and can collect particles like sediment and minerals resulting in a decreased flow from the faucet. Clean and disinfect the aerators or screens on a regular basis.

Check with your plumber if you find particles in the faucet screen as they could be pieces of plastic from the water heater dip tube. Faucet gaskets can break down and cause black, oily slime. If you find this slime, replace the faucet gasket with a higher-quality product. White scaling or hard deposits on faucets and shower heads may be caused by hard water or water with high levels of calcium carbonate. Clean these fixtures with vinegar or use water softening to reduce the calcium carbonate levels for the hot water system.

Water Filtration/Treatment Devices

A smell of rotten eggs can be a sign of bacteria on the filters or in the treatment system. The system can also become clogged over time so regular filter replacement is important. (Remember to replace your refrigerator filter!)

Benefits of Chlorination

Disinfection, a chemical process used to control diseasecausing microorganisms by killing or inactivating them, is unquestionably the most important step in drinking water treatment. By far, the most common method of disinfection in North America is chlorination.

Before communities began routinely treating drinking water with chlorine (starting with Chicago and Jersey City in 1908), cholera, typhoid fever, dysentery, and hepatitis A killed thousands of U.S. residents annually. Drinking water chlorination and filtration have helped to virtually eliminate these diseases in the U.S. Significant strides in public health are directly linked to the adoption of drinking water chlorination. In fact, the filtration of drinking water plus the use of chlorine is probably the most significant public health advancement in human history.

How chlorination works:

Potent Germicide Reduction in the level of many disease-causing microorganisms in drinking water to almost immeasurable levels.

Taste and Odor Reduction of many disagreeable tastes and odors like foul-smelling algae secretions, sulfides, and odors from decaying vegetation.

Biological Growth Elimination of slime bacteria, molds, and algae that commonly grow in water supply reservoirs, on the walls of water mains, and in storage tanks.

Chemical Removal of hydrogen sulfide (which has a rotten egg odor), ammonia, and other nitrogenous compounds that have unpleasant tastes and hinder disinfection. It also helps to remove iron and manganese from raw water.

What Causes the Pink Stain on Bathroom Fixtures?

The reddish-pink color frequently noted in bathrooms on shower stalls, tubs, tile, toilets, sinks, toothbrush holders and on pets' water bowls is caused by the growth of the bacterium Serratia marcesens. Serratia is commonly isolated from soil, water, plants, insects, and vertebrates (including man). The bacteria can be introduced into the house through any of the above mentioned sources. The bathroom provides a perfect environment (moist and warm) for bacteria to thrive.

The best solution to this problem is to continually clean and dry the involved surfaces to keep them free from bacteria. Chlorine-based compounds work best, but keep in mind that abrasive cleaners may scratch fixtures, making them more susceptible to bacterial growth. Chlorine bleach can be used periodically to disinfect the toilet and help to eliminate the occurrence of the pink residue. Keeping bathtubs and sinks wiped down using a solution that contains chlorine will also help to minimize its occurrence.

Serratia will not survive in chlorinated drinking water.

FOG (Fats, Oils and Grease)

You might not be aware of it, but every time you pour fat, oil, or grease (FOG) down your sink (e.g., bacon grease), you are contributing to a costly problem in the sewer collection system. FOG coats the inner walls of the plumbing in your house as well as the walls of underground piping throughout the community. Over time, these greasy materials build up and form blockages in pipes, which can lead to wastewater backing up into parks, yards, streets, and storm drains. These backups allow FOG to contaminate local waters, including drinking water. Exposure to untreated wastewater is a public health hazard. FOG discharged into septic systems and drain fields can also cause malfunctions, resulting in more frequent tank pump-outs and other expenses.

Communities spend billions of dollars every year to unplug or replace grease-blocked pipes, repair pump stations, and clean up costly and illegal wastewater spills. Here are some tips that you and your family can follow to help maintain a well-run system now and in the future:

NEVER:

- Pour fats, oil, or grease down the house or storm drains.
- Dispose of food scraps by flushing them.
- Use the toilet as a waste basket.

ALWAYS:

- Scrape and collect fat, oil, and grease into a waste container such as an empty coffee can, and dispose of it with your garbage.
- Place food scraps in waste containers or garbage bags for disposal with solid wastes.
- Place a wastebasket in each bathroom for solid wastes like disposable diapers, creams and lotions, and personal hygiene products including nonbiodegradable wipes.

Test Results

The City of Mount Dora's drinking water is monitored for many different kinds of contaminants on a very strict sampling schedule. The information below represents only those substances that were detected; our goal is to keep all detects below their respective maximum allowed levels. The State recommends monitoring for certain substances less than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken.

PRIMARY REGULATED CONTAMINANTS

Synthetic Organic Contaminants including Pesticides and Herbicides

CONTAMINANT AND UNIT OF MEASUREMENT	DATE OF SAMPLING (MO./YR.)	MCL VIOLATION (YES/NO)	LEVEL DETECTED	RANGE OF RESULTS	MCLG	MCL	LIKELY SOURCE OF CONTAMINATION
Dalapon (ppb)	3/2015	No	0.63	ND-0.63	200	200	Runoff from herbicide used on rights of way

Stage 1 Disinfectants / Disinfection By-Products

CONTAMINANT AND UNIT OF MEASUREMENT	DATE OF SAMPLING (MO./YR.)	MCL VIOLATION (YES/NO)	LEVEL DETECTED	RANGE OF RESULTS	MRDLG	MRDL	LIKELY SOURCE OF CONTAMINATION
Chlorine (ppm)	2016 (Monthly)	No	1.21	0.97–1.57	4.0	4.0	Water additive used to control microbes

Stage 2 Disinfectants / Disinfection By-Products

CONTAMINANT AND UNIT OF MEASUREMENT	DATE OF SAMPLING (MO./YR.)	MCL VIOLATION (YES/NO)	LEVEL DETECTED	RANGE OF RESULTS	MCLG	MCL	LIKELY SOURCE OF CONTAMINATION
Haloacetic Acids (five) [HAA5] (ppb)	1/2016-12/2016	No	32.20	18.78–38.31	NA	60	By-product of drinking water disinfection
TTHM [Total trihalomethanes] ¹ (ppb)	1/2016-12/2016	No	64.16	44.31-87.54	NA	80	By-product of drinking water disinfection

Lead and Copper (Tap water samples were collected from sites throughout the community)

CONTAMINANT AND UNIT OF MEASUREMENT	DATE OF SAMPLING (MO./YR.)	AL EXCEEDANCE (YES/NO)	90TH PERCENTILE RESULT	NO. OF SAMPLING SITES EXCEEDING THE AL	MCLG	AL (ACTION LEVEL)	LIKELY SOURCE OF CONTAMINATION
Copper [tap water] (ppm)	08/2014	No	0.36	0	1.3	1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
Lead [tap water] (ppb)	08/2014	No	1.00	1	0	15	Corrosion of household plumbing systems; erosion of natural deposits

¹Some persons who drink water containing trihalomethanes in excess of the MCL over many years may experience problems with their liver, kidneys, or central nervous systems, and may have an increased risk of getting cancer.

Definitions

AL (Action Level): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

LRAA (Locational Running Annual

Average): The average of sample analytical results for samples taken at a particular monitoring location during the previous four calendar quarters.

MCL (Maximum Contaminant Level):

The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant

Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual

Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual

Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable

ND (Not detected): Indicates that the substance was not found by laboratory analysis.

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).